

Disproportionierung von Schwefeldioxid am Molybdän(0)-Komplex trans-[(dppe)₂Mo(N₂)₂] Molekülstruktur von trans-[(dppe)₂Mo(S)O] · SO₂ · H₂SO₄

Ingo-Peter Lorenz*, Gudrun Walter und Wolfgang Hiller

Institut für Anorganische Chemie der Universität Tübingen, Auf der Morgenstelle 18, D-7400 Tübingen 1

Eingegangen am 13. November 1989

Key Words: Chalkogenido complex, mixed, of molybdenum / Disproportionation of SO₂ / Sulfur, dioxide, monoxide / Oxidative addition of SO / Molybdenum complexes

Disproportionation of Sulfur Dioxide by the Molybdenum(0) Complex trans-[(dppe)₂Mo(N₂)₂]. Molecular Structure of trans-[(dppe)₂Mo(S)O] \cdot SO₂ \cdot H₂SO₄

Sulfur dioxide disproportionates into sulfur monoxide and sulfuric acid, when it is passed through a solution of the molybdenum(0) complex *trans*-[(dppe)₂Mo(N₂)₂] (1) in toluene. Whereas SO undergoes an oxidative addition reaction onto the intermediate 14 VE-complex fragment (dppe)₂Mo to give the mixed dichalkogenidomolybdenum(IV) complex *trans*-[(dppe)₂Mo(S)O] (3), both molecules H_2SO_4 and intact SO_2 re-

Das große Interesse an Umsetzungen von Schwefeldioxid mit Übergangsmetallkomplexen liegt sowohl an der strukturellen Vielfalt der resultierenden SO_2 -Komplexe¹⁻³⁾ als auch an der variantenreichen Reaktivität von SO₂; freies SO₂ geht Additions- und Insertionsreaktionen ein, koordiniertes SO₂ Eliminierungs-, Substitutions-, Additions-, Oxidationsund Reduktionsreaktionen. Durch die verstärkten ökologischen Bestrebungen in jüngster Zeit kommt im Zusammenhang mit dem Problem der Rauchgasentschwefelung der Reduktion von SO₂ eine besondere Bedeutung zu. Die bisherigen Übergangsmetall-induzierten bzw. -zentrierten Reduktionen von SO₂ führten zu Disulfido-⁴), Thiosulfato-⁵ und Dithionito-Komplexen⁶; auch die Bildung des Dithionato-Komplexes [(n⁶-C₆H₆)₂Cr]S₄O₁₀⁷⁾ verläuft über eine primäre Reduktion von SO2. Bei eigenen Untersuchungen über Schwefelmonoxid als Komplexligand gelang uns durch Umsetzung mit dem Tetrahydrido-Komplex [(dppm)₂COIr- H_2 ₂ (dppm = Ph₂PCH₂PPh₂) erstmals die partielle Desoxygenierung von freiem SO₂ zu komplexgebundenem Schwefelmonoxid und Schwefel^{8,9)}. Reduktionsreaktionen von SO₂ interessieren aber auch in der Bioanorganischen Chemie als Modellsysteme für das aktive Zentrum der Sulfitreduktase^{10,11}, einem Porphinatoeisen(II)-Komplex. Ein bereits für biologische Redoxenzyme wie Nitrogenase eingesetztes funktionelles Modell ist der Komplex $(dppe)_2 Mo(N_2)_2$ $(1)^{12,13}$ (dppe = Ph₂PCH₂CH₂PPh₂), dessen Eignung als strukturelles und funktionelles Modell für die oben genannte Sulfitreduktase bei der Umsetzung mit SO₂ getestet werden sollte.

Resultate und Diskussion

In Analogie zur Bildung von SO_2 -Komplexen wurde SO_2 -Gas durch eine Lösung von 1 in Toluol geleitet. Wegen der main in the solvating sphere. According to an X-ray structural analysis **3** crystallizes in the monoclinic space group $P2_1/n$ and shows an octahedral configuration at the central molybdenum atom with the oxo and sulfido ligands in *trans* positions; the two solvent molecules ethanol and toluene are also incorporated into the crystal lattice.

bevorzugten N₂-Eliminierung aus 1 und starken Lewis-Acidität des resultierenden Komplexfragments haben wir gemäß Gl. (1,2) die Bildung der Bis- bzw. Monoschwefeldioxid-Komplexe 2a, b mit η^1 -S-planarer Ligandenfunktion erwartet. Sie ließen sich jedoch nicht, auch nicht als Intermediate durch ³¹P{¹H}-NMR-spektroskopische Kontrolle, nachweisen. Vielmehr entstand gemäß Gl. (3) nach längerem Stehenlassen der Reaktionslösung der gemischte Dichalkogenido-Komplex (dppe)₂Mo(S)O (3) in Form violetter Kristalle. 3 ist gut löslich in CH₂Cl₂, jedoch kaum in allen anderen Lösungsmitteln. Der Komplex zersetzt sich bei Raumtemperatur und Luftzutritt, insbesondere in Lösung, in geschlossenen Kapillaren erst bei 185°C.

Aufgrund der ausgeprägten Oxo- bzw. Thiophilie von Molybdän, des ziemlich starren MP4-Gerüstes in (dppe)2M-Komplexen und nicht zuletzt wegen der oben genannten metallinduzierten bzw. -zentrierten Reduktionsreaktionen von SO₂ kann ein Vorschlag zum Reaktionsverlauf gemacht werden; ausschlaggebender Faktor war jedoch das Ergebnis der Röntgenstrukturanalyse von 3 mit dem Beweis des eingelagerten H₂SO₄-Moleküls. Schwefeldioxid besitzt sowohl reduzierende als auch oxidierende Eigenschaften; unter dem möglicherweise koordinativen Einfluß des nucleophilen Komplexfragments kann elektrophiles SO₂ disproportionieren - im einfachsten Fall in SO und SO₃, das mit Feuchtigkeitsspuren H₂SO₄ ergibt. SO kann zwar von Mo prinzipiell koordiniert werden (η^1 -S- bzw. η^2 -SO), wie ähnliche Untersuchungen unter sorgfältigstem Feuchtigkeitsausschluß zeigen¹⁴, die oxidative Additionsreaktion an das tetragonal planare Molybdän(0)-Zentrum scheint jedoch bevorzugt; der Wechsel der Oxidationsstufe und die Knüpfung zweier Mo(IV)-Chalkogen-Doppelbindungen liefern den Energiegewinn.

Verbindung 3 weist aufgrund der trans-axialen Position der Chalkogenidoliganden im ³¹P{¹H}-NMR-Spektrum (CH_2Cl_2) lediglich ein Singulettsignal bei $\delta = 39.2$ auf. Die Phenyl- bzw. Ethan-Protonen des dppe-Liganden spalten im ¹H-NMR-Spektrum (CD₂Cl₂) zu je einem Multiplett bei $\delta = 7.2$ bzw. 2.9 auf. Die Protonen des H₂SO₄-Moleküls werden wegen ungünstiger Intensitätsverhältnisse (2:8:40) und sehr rascher H/D-Austauschphänomene nicht detektiert. Im IR-Spektrum (fest/KBr) von 3 werden neben den charakteristischen Absorptionsbanden für die dppe-Liganden solche für v(MoO) bei 946 (m) und v(MoS) bei 480 cm⁻¹ (w) gefunden. Außerdem werden die typischen Frequenzen für das H₂SO₄-Molekül festgestellt: v(OH) = 2970, v(SO) =1370, 1170, 570 cm⁻¹; die drei IR-Frequenzen für das SO₂-Molekül können wegen Überlagerungen dagegen nicht mit letzter Sicherheit ausgemacht werden. Das FAB-Massen-

Abb. 1. SCHAKAL-Zeichnung des Moleküls 3

spektrum von 3 zeigt als massenhöchsten Peak den $[M + 2]^+$ -Peak bei m/z = 944, außerdem ein Signal bei m/z = 546 für die Abspaltung eines dppe-Liganden.

Die Kristallstrukturbestimmung von 3 bestätigt das oxidative Additionsprodukt sowie das oktaedrische Grundgerüst um das zentrale Molybdänatom (vgl. Abb. 1 und Tab. 1, 2). Analog zum Edukt 1 enthält auch Komplex 3 eine nahezu tetragonal planare MoP_4 -Struktureinheit ($Mo-P_n$ 254.7-256.8 pm) und eine lineare dreiatomige S-Mo-O-Anordnung in trans-axialer Lage (Mo-O1 177 pm, Mo-S1 241.5 pm; O1-Mo-S1 178°). Durch den starken trans-Effekt des Oxoliganden rückt der Mo-S1-Abstand fast in den Bereich von Mo-S-Einfachbindungen¹⁵, und die vier Phosphoratome der beiden dppe-Liganden sind in Richtung auf den Sulfidoliganden leicht versetzt (O1-Mo- $P_n \approx 91-93^\circ$, $S1-Mo-P_n \approx 86-89^\circ$). Während die beiden Chelatwinkel P1-Mo-P2 bzw. P3-Mo-P4 jeweils bei 80° liegen, sind die übrigen cisoiden Winkel mit Phosphanbeteiligung um ca. 20° aufgeweitet (P1-Mo-P3 bzw. $P2-Mo-P4 \approx 99-100^{\circ}$). Die beiden durch die dppe-Liganden gebildeten trans-ständigen und fünfgliedrigen MoP₂C₂-Ringsysteme weisen die übliche Twist-Konformation und normale Bindungsabstände und -winkel auf.

Tab. 1. Bindungslängen [pm] in $3 \cdot SO_2 \cdot H_2SO_4 \cdot Toluol \cdot Ethanol (Standardabweichungen in Klammern)$

Atome	Abstand	Atome	Abstand
Mo-S1	241.5(7)	P3—C3	189(2)
Mo-P1	255.3(8)	P3-C51	179(3)
Mo-P2	256.8(8)	P3C61	184(3)
Mo—P3	255.8(7)	P4C4	187(2)
Mo-P4	254.7(8)	P4C71	186(3)
Mo01	177(1)	P4-C81	186(2)
P1C1	189(3)	S2—O21	152(3)
P1-C11	183(2)	S2	144(3)
P1C21	183(2)	S2—O23	151(2)
P2C2	184(3)	S2	143(2)
P2-C31	187(2)	S3	138(4)
P2C41	178(3)	S3	136(3)

Tab. 2. Bindungswinkel [°] in $3 \cdot SO_2 \cdot H_2SO_4 \cdot Toluol \cdot Ethanol (Standardabweichungen in Klammern)$

-	Atome	Winkel	Atome	Winkel
•	S1-Mo-P1	85.7(2)	C2-P2-C41	105(1)
	S1-Mo-P2	88.3(2)	C31-P2-C41	103(1)
	S1-Mo-P3	88.0(2)	C3-P3-C51	105(1)
	S1-Mo-P4	88.5(2)	C3-P3-C61	107(1)
	S1-Mo-O1	178.1(6)	C51-P3-C61	103(1)
	P1-Mo-P2	80.4(2)	C4-P4-C71	104(2)
	P1-Mo-P3	99.9(3)	C4-P4-C81	103(2)
	P1-Mo-P4	174.2(2)	C71-P4-C81	103(1)
	P1-Mo-O1	92.8(6)	P1-C1-C2	107(2)
	P2-Mo-P3	176.2(2)	P2-C2-C1	111(1)
	P2-Mo-P4	99.3 (3)	P3-C3-C4	106(2)
	P2-Mo-O1	92.8(5)	P4-C4-C3	109(1)
	P3-Mo-P4	80.0(3)	O21-S2-O22	107(1)
	P3-Mo-O1	91.0(5)	O21-S2-O23	106(2)
	P4-Mo-O1	92.9(6)	O21-S2-O24	109(1)
	C1-P1-C11	104(1)	O22-S2-O23	111(1)
	C1-P1-C21	107(2)	O22-S2-O24	111(1)
	C11-P1-C21	104(1)	O23-S2-O24	112(1)
	C2-P2-C31	106(1)	O31-S3-O32	116(2)

A 981

Die Röntgenstrukturanalyse von 3 zeigt überraschenderweise das Vorliegen zweier weiterer, aber nicht koordinierter

Formel C ₆₁ H ₆₄ O ₈ P ₄ S ₃ Mo	Formeleinheiten $Z = 4$
Molmasse 1241.2	Dichte $d_{ber} = 1.401 \text{ g/cm}^3$
Kristallsystem monoklin	Gesamtzahl der Reflexe 5939
Raumgruppe P2 ₁ /n	symmetrieunabhängige Reflexe
Gitterkonstanten	mit I $\geq 3\sigma(I)$ 1941
a = 1698.5(3) pm	Verfeinerte Parameter 315
b = 1938.4(4) pm	Meßbereich $\Theta_{max} 20^{o}$
c = 1872.6(4) pm	Absorptionskoeffizient 4.09 cm ⁻¹
$\alpha = 90^{\circ}$	R = 0.077
$\beta = 107.37(3)^{\circ}$	$R_{w} = 0.090$
$\gamma = 90^{\circ}$	Meßtemperatur - 50°C
$V = 5884.04 \times 10^6 \text{ pm}^3$	

Tab. 3. Kristall- und Meßdaten von $3 \cdot SO_2 \cdot H_2SO_4 \cdot Toluol$ Ethanol

Moleküle – nämlich von SO₂ und H_2SO_4 – innerhalb des Kristallgitters; sie werden offensichtlich ohne jegliche bindende Wechselwirkung in die Solvathülle von Komplex 3 miteingebaut (Abstände Mo-S_{SO2} bzw. Mo-S_{SO4} länger als 500 pm). Während SO₂ wohl als überschüssiges Edukt angesehen werden darf, ist H₂SO₄ neben dem oxidativ addierten SO das zweite Disproportionierungsprodukt von Schwefeldioxid. Die Abstände S3-O31 bzw. S3-O32 von SO₂ liegen zwischen 136 und 138 pm, der Winkel O31-S3-O32 beträgt 116°. Das H₂SO₄-Molekül weist zwei kurze (S2-O22 144 bzw. S2-O24 143 pm) und zwei lange (S2-O21 152 bzw. S2-O23 151 pm) S-O_n-Abstände auf. Dementsprechend weichen die Winkel O22-S2-O24 (111°) und O21-S2-O23 (106°) am stärksten vom Tetraederwinkel am zentralen Schwefelatom ab. Die Positionen der beiden H-Atome der Hydroxylgruppen konnten nicht ermittelt werden. In der asymmetrischen Einheit befinden sich außerdem die beiden Solvensmoleküle Toluol und Ethanol (durch 1 als Solvat miteingeschleppt).

Tab. 4. Lageparameter und Temperaturparameter B_{eq} bzw. B_{iso} [10⁴ pm²] der Atome in $3 \cdot SO_2 \cdot H_2SO_4 \cdot Toluol \cdot Ethanol.$ Die Mo-Lage wurde mit anisotropen Temperaturparametern verfeinert; angegeben ist der äquivalente isotrope Temperaturparameter gemäß $B_{eq} = 4/3[B_{11}a^2 + B_{22}b^2 + B_{33}c^2 + B_{12}ab\cos\gamma + B_{13}ac\cos\beta + B_{23}bc\cos\alpha]$. Alle anderen Atompositionen wurden nur mit isotropen Temperaturfaktoren berücksichtigt

Atom	x	у	z	В	Atom	x	у	Z	В
Мо	0.1452(1)	0.7776(1)	0.7993(1)	1.99(4)	C55	-0.086(2)	0.720(2)	0.948(2)	7.3(9)
S1	0.2845(4)	0.8164(4)	0.8587(4)	3.1(2)	C56	-0.016(2)	0.707(2)	0.926(2)	5.6(8)
P 1	0.1027(4)	0.9015(4)	0.8157(4)	2.3(1)	C61	0.231(1)	0.747(1)	1.009(1)	2.1(6)
P2	0.1555(4)	0.8300(4)	0.6764(4)	2.5(2)	C62	0.255(1)	0.816(1)	1.0 26 (1)	2.5(5)
P3	0.1450(4)	0.7270(4)	0.9254(4)	2.5(1)	C63	0.316(1)	0.829(1)	1.090(1)	2.8(6)
P4	0.2025(4)	0.6579(4)	0.7889(4)	2.6(2)	C64	0.354(2)	0.7 80 (2)	1.143(2)	4.6(7)
01	0.0417(9)	0.7508(7)	0.7579(8)	2.1(3)	C65	0.327(2)	0.711(2)	1.128(1)	4.2 (7)
C1	0.132(1)	0.953(1)	0.742(1)	1.8(5)	C66	0.266(2)	0.692(1)	1.059(1)	3.7(7)
C2	0.102(1)	0.913(1)	0.669(1)	2.8(6)	C71	0.301(1)	0.647(1)	0.766(1)	2.0(5)
C3	0.147(1)	0.631(1)	0.912(1)	1.8(5)	C72	0.299(2)	0.631(1)	0.693(1)	3.2(6)
C4	0.222(1)	0.616(1)	0.882(1)	1.5(5)	C73	0.372(2)	0.632(2)	0.675(1)	4.1(7)
C11	0.146(1)	0.952(1)	0.902(1)	2.4(6)	C74	0.446(1)	0.646(1)	0.726(1)	2.3(6)
C12	0.099(2)	0.966(1)	0.947(1)	3.2(6)	C75	0.445(2)	0.666(1)	0.793(1)	3.0(6)
C13	0.138(2)	1.005(2)	1.016(2)	4.4(7)	C76	0.373(1)	0.667(1)	0.817(1)	2.3(5)
C14	0.218(2)	1.025(2)	1.030(2)	4.8(7)	C81	0.131(1)	0.596(1)	0.724(1)	2.2(5)
C15	0.266(2)	1.010(2)	0.985(2)	5.1(8)	C82	0.072(2)	0.620(1)	0.664(1)	3.2(6)
C16	0.227(1)	0.973(1)	0.918(1)	2.9(6)	C83	0.024(2)	0.572(1)	0.610(1)	2.9(6)
C21	-0.009(1)	0.911(1)	0.797(1)	1.5(5)	C84	0.048(2)	0.501(1)	0.622(1)	3.1(6)
C22	-0.052(2)	0.865(1)	0.822(1)	3.1(6)	C85	0.106(2)	0.479(1)	0.680(1)	3.1(6)
C23	-0.136(2)	0.871(2)	0.811(2)	4.2(7)	C86	0.153(2)	0.524(1)	0.733(1)	3.8(7)
C24	-0.178(2)	0.926(2)	0.769(2)	5.3(8)	S2	-0.1206(4)	0.4855(4)	0.9189(4)	3.4(2)
C25	-0.138(2)	0.970(2)	0.740(2)	7(1)	O21	-0.059(1)	0.429(1)	0.950(1)	5.6(5)
C26	-0.047(2)	0.969(2)	0.755(2)	6.0(9)	O22	-0.143(1)	0.481(1)	0.839(1)	5.8(5)
C31	0.099(1)	0.779(2)	0.592(1)	3.3(6)	O23	-0.077(1)	0.552(1)	0.947(1)	5.5(5)
C32	0.014(1)	0.779(1)	0.57 0 (1)	2.3(5)	O24	-0.191(1)	0.476(1)	0.944(1)	4.4(5)
C33	-0.030(2)	0.741(1)	0.505(1)	3.7(7)	S3	-0.0598(5)	0.5099(5)	0.7548(5)	5.5(2)
C34	0.014(2)	0.703(1)	0.468(1)	3.3(6)	O3 1	-0.058(2)	0.581(1)	0.764(2)	10.0(8)
C35	0.098(2)	0.703(2)	0.491(2)	4.9(8)	O32	-0.116(2)	0.485(2)	0.693(2)	10.8(9)
C36	0.140(1)	0.745(1)	0.553(1)	2.8(6)	C91	0.844(2)	0.250(2)	0.757(2)	7(1)
C41	0.250(2)	0.850(1)	0.658(1)	2.8(6)	C92	0.810(2)	0.194(2)	0.777(2)	8(1)
C42	0.250(1)	0.898(1)	0.604(1)	2.1(5)	C93	0.778(2)	0.144(2)	0.725(2)	8(1)
C43	0.325(2)	0.912(2)	0.588(2)	4.7(7)	C94	0.781(2)	0.141(2)	0.654(2)	7(1)
C44	0.396(2)	0.878(1)	0.623(1)	3.9(7)	C95	0.824(2)	0.196(2)	0.637(2)	8(1)
C45	0.398(2)	0.830(1)	0.68 0 (1)	3.7(7)	C96	0.852(2)	0.252(2)	0.683(2)	6.3(9)
C46	0.321(1)	0.817(1)	0.696(1)	3.1(6)	C97	0.877(2)	0.307(2)	0.803(2)	8(1)
C51	0.056(1)	0.742(1)	0.955(1)	2.6(6)	O100	0.403(2)	0.521(2)	0.034(2)	14(1)
C52	0.055(2)	0.794(1)	1.007(2)	4.5(7)	C101	0.460(3)	0.462(2)	0.041(2)	11(1)
C53	-0.015(2)	0.807(2)	1.026(2)	6.7(9)	C102	0.527(2)	0.443(2)	0.018(2)	6.0(9)
C54	-0.082(2)	0.769(2)	1.000(2)	8(1)					

Wir danken der Deutschen Forschungsgemeinschaft und dem Verband der Chemischen Industrie, e. V., Fonds der Chemischen Industrie für die finanzielle Förderung dieser Arbeit; Herrn Prof. Dr. J. Strähle danken wir für die Bereitstellung der Geräte zur Röntgenstrukturanalyse.

Experimenteller Teil

Sämtliche Umsetzungen erfolgten unter Argon in getrockneten und argongesättigten Lösungsmitteln; das SO2-Gas wurde jedoch ungereinigt eingeleitet. $Mo(dppe)_2(N_2)_2$ (1) wurde nach Dilworth et al.¹⁶⁾ dargestellt. - Massenspektren: Varian MAT 711 A. - IR-Spektren: Bruker IFS 48 mit Rechner Aspect 1000. – ¹H-NMR-Spektren: Bruker AC 80 (Meßfrequenz 80.13 MHz; int. Standard TMS). - ³¹P-NMR-Spektren: Bruker WP 80 (Meßfrequenz 32.9 MHz; ext. Standard 85proz. H_3PO_4/D_2O_3 . – Elementaranalysen: Anlage der Fa. Carlo-Erba, Modell 1104. – Kristallstruktur: Automatisiertes Einkristalldiffraktometer CAD4 der Fa. Enraf-Nonius, Delft (Graphitmonochromator, Mo-Ka-Strahlung).

1. trans-/1,2-(Diphenylphosphino)ethan-P,P]oxothioxomolybdän-(IV)-Schwefeldioxid-Schwefelsäure $(3 \cdot SO_2 \cdot H_2SO_4)$: Durch eine Lösung von 0.27 mmol (250 mg) 1 in 50 ml frisch destilliertem Toluol leitet man bei Raumtemp. 30 min SO₂-Gas. Nach 2stdg. Rühren wird der dunkelviolette Niederschlag abfiltriert, mit Toluol gewaschen und i. Vak. getrocknet. Ausb. 165 mg (57%), Zers.-P. 185°C.

C₅₂H₅₀MoO₇P₄S₃ (1103.0) Ber. C 56.63 H 4.57 S 8.72 Gef. C 55.79 H 4.80 S 8.31

2. Kristallstruktur von $3 \cdot SO_2 \cdot H_2SO_4 \cdot Toluol \cdot Ethanol^{17}$: Ein Einkristallplättchen der Größe $0.2 \times 0.2 \times 0.05$ mm wurde bei Raumtemp. aus einer Toluollösung erhalten und auf dem Gerät CAD-4 bei - 50°C vermessen. Tab. 3 enthält die Kristalldaten und Meßbedingungen, Tab. 4 die Lageparameter. Die Lösung der Struktur gelang mittels einer Patterson-Synthese. Alle Rechnungen erfolgten mit VAXSDP¹⁸⁾ auf einem Rechner Micro VAX 3500, die graphische Darstellung von 3 mit SCHAKAL¹⁹⁾.

CAS-Registry-Nummern

1: 25145-64-6 / 3: 125641-49-8 / 3 · SO₂ · H₂SO₄ · Toluol · Ethanol: 125664-82-6 / SO2: 7446-09-5

- ¹⁾ R. R. Ryan, G. J. Kubas, D. C. Moody, P. G. Eller, Struct. Bonding (Berlin) 46 (1981) 47.
- ²⁾ D. M. P. Mingos, Transition Met. Chem. (Weinheim Ger.) 3 (1978) 1.
- ³⁾ W. A. Schenk, Angew. Chem. 99 (1987) 101; Angew. Chem. Int. Ed. Engl. 26 (1987) 98.
- ⁴⁾ C. R. Brulet, S. S. Isied, H. Taube, J. Am. Chem. Soc. 95 (1973) 4758.
- ⁵⁾ G. J. Kubas, R. R. Ryan, Inorg. Chem. 23 (1984) 3181.
- ⁶⁾ G. J. Kubas, H. J. Wassermann, R. R. Ryan, Organometallics 4 (1985) 2012
- ⁷⁾ C. Elschenbroich, R. Gondrum, W. Massa, Angew. Chem. 97 (1985) 976; Angew. Chem. Int. Ed. Engl. 24 (1985) 967.
- ⁽¹⁾ A. Neher, I.-P. Lorenz, Angew. Chem. **101** (1989) 1389; Angew. Chem. Int. Ed. Engl. **28** (1989) 1342.
- ⁹⁾ A. Neher, Dissertation, Universität Tübingen, 1989.
- ¹⁰⁾ L. M. Siegel, P. S. Davis, H. J. Kamin, J. Biol. Chem. 249 (1974) 1572
- ¹¹⁾ W. R. Scheidt, Y. Ja Lee, M. G. Finnegan, Inorg. Chem. 27 (1988) 4725.
- 12) E. E. van Tamelen, J. A. Gladysz, J. S. Miller, J. Am. Chem. Soc. 95 (1973) 1347
- ¹³⁾ J. Chatt, F. R. S. Leigh, G. J. Leigh, Chem. Soc. Rev. 1 (1972) 121
- ¹⁴⁾ G. Walter, geplante Dissertation, Universität Tübingen, 1990.
- ¹⁵ D. L. Stevenson, L. F. Dahl, J. Am. Chem. Soc. 89 (1967) 3721.
 ¹⁶ J. R. Dilworth, R. L. Richards, Inorg. Synth. 20 (1980) 119.
- ¹⁷⁾ Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-54253, der Autoren und des Zeitschriftenzitats angefordert werden.
- ¹⁸⁾ Structure Determination Package VAX SDP, Enraf-Nonius, Delft, Holland.
- ¹⁹⁾ E. Keller, Programm SCHAKAL, Universität Freiburg.

[372/89]